skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mao, Wensen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the past decade, deep reinforcement learning (RL) techniques have significantly advanced robotic systems. However, due to the complex architectures of neural network models, ensuring their trustworthiness is a considerable challenge. Programmatic reinforcement learning has surfaced as a promising approach. Nonetheless, synthesizing robot-control programs remains challenging. Existing methods rely on domain-specific languages (DSLs) populated with user-defined state abstraction predicates and a library of low-level controllers as abstract actions to boot synthesis, which is impractical in unknown environments that lack such predefined components. To address this limitation, we introduce RoboScribe, a novel abstraction refinement-guided program synthesis framework that automatically derives robot state and action abstractions from raw, unsegmented task demonstrations in high-dimensional, continuous spaces. It iteratively enriches and refines an initially coarse abstraction until it generates a task-solving program over the abstracted robot environment. RoboScribe is effective in synthesizing iterative programs by inferring recurring subroutines directly from the robot’s raw, continuous state and action spaces, without needing predefined abstractions. Experimental results show that RoboScribe programs inductively generalize to long-horizon robot tasks involving arbitrary numbers of objects, outperforming baseline methods in terms of both interpretability and efficiency. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Goal-conditioned reinforcement learning (RL) is a powerful approach for learning general-purpose skills by reaching diverse goals. However, it has limitations when it comes to task-conditioned policies, where goals are specified by temporally extended instructions written in the Linear Temporal Logic (LTL) formal language. Existing approaches for finding LTL-satisfying policies rely on sampling a large set of LTL instructions during training to adapt to unseen tasks at inference time. However, these approaches do not guarantee generalization to out-of-distribution LTL objectives, which may have increased complexity. In this paper, we propose a novel approach to address this challenge. We show that simple goal-conditioned RL agents can be instructed to follow arbitrary LTL specifications without additional training over the LTL task space. Unlike existing approaches that focus on LTL specifications expressible as regular expressions, our technique is unrestricted and generalizes to ω-regular expressions. Experiment results demonstrate the effectiveness of our approach in adapting goal-conditioned RL agents to satisfy complex temporal logic task specifications zero-shot. 
    more » « less